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Christopher Nimsky 1,3 and Miriam H. A. Bopp 1,3

1 Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany;
dustin.grimm@students.edu.edu.mt (D.G.); sassb@med.uni-marburg.de (B.S.);
mirza.pojskic@uk-gm.de (M.P.); jbartsch@med.uni-marburg.de (J.W.B.);
barbara.carl@helios-gesundheit.de (B.C.); nimsky@med.uni-marburg.de (C.N.);
bauermi@med.uni-marburg.de (M.H.A.B.)

2 EDU Institute of Higher Education, Villa Bighi, Chaplain’s House, KKR 1320 Kalkara, Malta
3 Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
4 Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, Ludwig-Erhard-Strasse 100,

65199 Wiesbaden, Germany
* Correspondence: felix.corr@live.de

Abstract: Glioblastoma, as the most aggressive brain tumor, is associated with a poor prognosis and
outcome. To optimize prognosis and clinical therapy decisions, there is an urgent need to stratify
patients with increased risk for recurrent tumors and low therapeutic success to optimize individual
treatment. Radiogenomics establishes a link between radiological and pathological information.
This review provides a state-of-the-art picture illustrating the latest developments in the use of
radiogenomic markers regarding prognosis and their potential for monitoring recurrence. Databases
PubMed, Google Scholar, and Cochrane Library were searched. Inclusion criteria were defined as
diagnosis of glioblastoma with histopathological and radiological follow-up. Out of 321 reviewed
articles, 43 articles met these inclusion criteria. Included studies were analyzed for the frequency
of radiological and molecular tumor markers whereby radiogenomic associations were analyzed.
Six main associations were described: radiogenomic prognosis, MGMT status, IDH, EGFR status,
molecular subgroups, and tumor location. Prospective studies analyzing prognostic features of
glioblastoma together with radiological features are lacking. By reviewing the progress in the
development of radiogenomic markers, we provide insights into the potential efficacy of such an
approach for clinical routine use eventually enabling early identification of glioblastoma recurrence
and therefore supporting a further personalized monitoring and treatment strategy.

Keywords: radiogenomics; glioblastoma; GBM; recurrence; imaging genomics; radiomics; magnetic
resonance imaging; gliomas; molecular markers; radiology; neuro-oncology

1. Introduction

Despite well-established multimodal therapeutic regimens, glioblastoma (GBM) is
the most lethal primary brain tumor with low survival rates [1] that have not significantly
improved over the last few years. Notably, more than half of patients will undergo tumor
progression after six months following surgery [2,3], and the median survival is between
ten and twelve months [4,5]. Magnetic resonance imaging (MRI) plays an essential role in
diagnosing and monitoring tumor progression and therapy. Thus, in addition to preopera-
tive diagnostic information, the extent of resection can be assessed early after surgery. Even
though comprehensive imaging modalities for MRI are available, there is still no standard
method that can reliably detect early tumor progression. A commonly used marker for
tumor progression in higher grade gliomas is contrast enhancement [6]. However, parame-
ters such as flow rates from perfusion measurements [7] also appear to be related to tumor
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progression and angiogenesis. In addition, there are parameters from MR spectroscopy to
distinguish recurrence/progression and necrosis during therapy [8].

When assessing prognosis and selecting an individually appropriate treatment strategy,
prognostic and predictive molecular markers play an increasingly significant role [9] and
have prompted significant changes to the 2016 World Health Organization (WHO) classifi-
cation of central nervous system (CNS) tumors and refinements over the last years [10,11].
According to the new WHO classification published in 2021, only isocitrate dehydrogenase
wildtype and H3 wildtype (IDHwtH3wt) astrocytomas are now classified as the GBM WHO
grade 4 [11].

GBMs with similar imaging characteristics may exhibit different clinical courses,
treatment responses, and outcomes [12] whilst genetically similar GBM tumors may present
varying radiological characteristics morphologically distinct on MRI [13,14]. Additionally,
investigations on the molecular level can provide little information regarding macroscopic
characteristics, such as vascularization or space-occupying effects. In an era of precision
medicine, intensive research has been conducted on imaging markers derived from routine
clinical MR images to match with observations regarding molecular features of GBM
tumors in a non-invasive manner. By taking a personalized view of the disease, precision
medicine approaches aim to enable individualized decision making about the diagnostic
and therapeutic approaches by using multiple data sources—from genomics to radiological
sequences [15,16]. However, despite those numerous efforts in recent years, there still
seems to have been no significant breakthrough in determining interrelated molecular
and radiological characteristics that can be accurately used for individual prognostic
stratification in GBM patients.

1.1. Prognosis of Disease Progression in Glioblastoma

Multiple factors have been shown to be relevant for the prognosis of disease progres-
sion. At the individual patient level, the pre-operative Karnofsky Performance Score (KPS)
plays an important role, along with age and sex [17–22]. From a surgical point of view,
location and accessibility are essential for maximally safe resection. Clinical studies have
shown that the extent of maximum safe resection in glioblastoma therapy correlates with the
progression-free interval (PFS) and overall survival (OS) [23–25]. To improve the extent of
resection, the role of neuronavigation and intraoperative MRI could be demonstrated [26].

The prognosis in GBM is highly influenced by tumor biological characteristics. O6-
methylguanine-DNA methyl-transferase (MGMT) promoter methylation is considered the
most important predictive tool in adjuvant treatment with alkylating chemotherapeutic
agents such as temozolomide, thus influencing treatment response and prognosis [12].
A methylated MGMT promoter correlates with increased survival time and recurrence
pattern [27–29]. IDH mutations possess the greatest prognostic significance in gliomas
and are associated with longer OS and PFS [9]. IDH1 and IDH2 mutations have been
shown to correlate with a two- to three-fold increase in survival [30]. However, these
mutations occur in only up to 12% of GBMs [31]. Increasingly, IDH mutation and malignant
transformation are being linked to numerous alterations at the cellular level [32], e.g.,
cellular epigenetics, DNA repair pathways, and redox homeostasis [33]. This could provide
potential opportunities for targeting these pathways [34] or complementing currently
available approved therapeutic protocols [33,35,36]. The epidermal growth factor receptor
(EGFR) belongs to the family of epidermal growth factor receptors with tyrosine kinase
activity [37]. Dysregulation of the epidermal growth factor signaling pathway can be
observed in approximately 80% of high-grade gliomas, resulting either from aberrant
expression of EGFR or an EGFR variant (EGFRvIII) [38,39]. Generally, EGFR amplifications
are associated with a poorer prognosis [40–42].

Of note, various molecular classifications of GBM exist. A frequently used classification
is the one described by Verhaak et al. based on gene signatures thereby discriminating four
main GBM subtypes: proneural, neural, classical, and mesenchymal [43]. The proneural
subtype is more common in younger patients and is associated with a better prognosis [44].
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The role of tumor location also appears to play a prognostic role. In particular, the sub-
ventricular zone (SVZ) is discussed as an associated site in gliomagenesis and resistance
to treatment. Thereby, the SVZ seems to be an independent prognostic factor in glioblas-
toma [45]. In addition, tumor size (e.g., diameter greater than 5 cm [46,47]), tumors crossing
midline, and central tumor locations appear to have a poorer prognosis [46–49]. Table 1
summarizes various factors associated with the prognosis of glioblastoma.

Table 1. Factors influencing the prognosis in GBM.

Factor Positive Prognosis Negative Prognosis References

EOR Maximal resection
(EOR ≥ 98%)

Subtotal resection
(EOR ≤ 78%) [23–25,50,51]

Sex Female Male [17–19]

Age ≤40 ≥70 [20–22]

KPS ≥70 ≤60 [21,52]

IDH status Mutant status Wildtype status [30,53,54]

MGMT Methylated Unmethylated [27–29]

TERT No mutation Mutation [55–57]

EGFR Amplification Negative Positive [40–42]

Tumor size <5 cm (axial diameter) >5 cm (axial diameter) [46,47]

Tumor location Increased distance to center
of third ventricle

Crossing midline/
central location [47–49]

Abbreviations: EGFR, epidermal growth factor receptor; EOR, extent of resection; IDH, isocitrate de-hydrogenase;
KPS, Karnofsky Performance Sore; MGMT, O6-methylguanine-DNA methyl-transferase; TERT, telomerase re-
verse transcriptase.

Besides traditionally well-described correlations, the question of recurrence and
progression-free survival remains unresolved. There is still no standard follow-up and no
individualization depending on the patient’s risk. Therefore, efforts have been made to
combine imaging and tumor characteristics for follow-up and prognostic assessment.

1.2. Radio(geno)mics of Glioblastoma

Radiogenomics can be understood as a synthesis of two basic concepts. Possible
molecular correlations can be related to a specific radiological phenotype, whereas, on the
other hand, it can be shown how a particular genomic variation affects tumor imaging
properties [16,58,59]. Radiogenomics defines relationships between image features and
molecular markers [16]. Those investigations can be divided into either exploratory or
hypothesis-driven types of studies [58]. Exploratory studies compare imaging features
with different genomic alterations, whereas hypothesis-driven studies evaluate radiation
phenotypes relevant to a particular genetic alteration [60]. Especially in recent years,
the application of artificial intelligence (AI) in medicine has increased considerably and
is affecting multiple medical specialties [61]. Machine learning (ML) approaches have
become a popular and nowadays widespread used technique to extract multiple features
by converting for example medical images into mineable high-dimensional feature sets [62],
selecting and determining relevant features for further reduction of data complexity, and
finally more precise classification and outcome prediction [63,64]. Beyond the scope of
manually extracted features, ML allows for an automated extraction of, e.g., first-order
statistics, shape-based/textural/wavelet/geodesic features, or tissue probability maps [65].
As high dimensionality may lead to increased model complexity and overfitting issues,
reducing dimensionality by feature selection is an essential step that can be performed
by methods such as least absolute shrinkage and selection operator (LASSO) or random
forests (RF) [66,67]. Based on selected features, various ML approaches can be applied for
classification and outcome prediction, e.g., support vector machines (SVM), decision trees
(DT), RFs as an extension of DTs, artificial neural networks (ANN), logistic regression (LR),
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Naïve Bayes (NB), or K-nearest neighbors (KNN). For further details and comparison of
those methods, see [68].

1.3. Rationale

Supporting interdisciplinary therapy of glioblastoma requires a comprehensive under-
standing of the patient’s individual risk of tumor progression and recurrence formation to
discuss early therapeutic considerations in a comprehensive manner. In that case, nonin-
vasive routine MR clinical studies may provide insight into a likely response to treatment
modalities and could aid in decision making for adjusting an individual follow-up regime.
However, numerous studies were conducted over a decade that demonstrated numerous
correlations of varying degrees. Thus, to provide a comprehensive view of the connection
between tumor-related parameters and imaging characteristics, a systematic literature
review was conducted to summarize the current status of radiogenomic associations and
their prognostic potential that can be considered for optimization of the patient-specific
monitoring and treatment strategy.

2. Materials and Methods
2.1. Eligibility Criteria

The inclusion of registered articles was limited to those written in English, conducted
on human subjects, and published in peer-reviewed journals. The period was limited to the
years 2011 to 2021. Inclusion criteria for full review were: (1) confirmed diagnosis of GBM
(WHO 2016 definition) by a certified neuropathologist; (2) tumor resection without evidence
of residual tumor; (3) evaluation of tumor markers or histopathology; (4) evaluation of
magnetic resonance imaging sequences. Exclusion criteria were: (1) low-grade glioma and
WHO III anaplastic glioma; (2) subtotal tumor resection with residual tumor; (3) animal
studies; (4) reviews.

2.2. Information Sources and Search Strategy

An extensive web-based search was conducted following the guidelines provided
by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The
study was registered in PROSPERO; registration number CRD42022300803. The literature
search was conducted using the databases PubMed, Google Scholar, and Cochrane Library.
Keywords used were “glioma”, “glioblastoma”, “imaging genomics” and “radiogenomics”.
Search terms were combined with two Boolean operators: AND, OR. The search strategy
was peer-reviewed by M.B. using the Peer Review of Electronic Search Strategies (PRESS)
checklist. The search strategies can be found in the Appendix A (see Table A1).

2.3. Selection and Data Collection Process

An extensive web-based search was conducted following the guidelines provided by
PRISMA [69] (see Appendix A, Tables A2 and A3). The PubMed search yielded 121 results,
the Google Scholar search 196, and the Cochrane Library 4 results. In total, 321 articles from
databases were identified (as of 2 July 2021). As an additional search strategy, references
of the selected papers and other reviews were scanned. This led to the identification of
additional 30 articles. Titles and abstracts were screened for the inclusion and exclusion
criteria by two independent authors (F.C. and D.G.). To increase the consistency among
the authors, all authors screened the same publications and discussed the results. If these
matched the inclusion criteria, the full-text article was screened for quality using the
GRADE criteria and Critical Appraisal Skills Program (CASP) qualitative research checklist.
If the quality was judged to be good (meeting three out of four inclusion criteria), the
articles were included for the data extraction process. A third author was consulted in
case of disagreement between the other two initial authors. Potentially relevant articles
were therefore collected in a data table and examined again in consultation with the
reviewers. The following information was collected in the consequent data extraction
process: (1) author name; (2) publication year; (3) study design; (4) sample size; (5) tumor
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type; (6) tumor markers; (7) radiological sequences; (8) outcome measure; (9) results.
Duplicates were removed. At the end of the selection process, a total of 43 articles was
included in this review. A qualitative systematic review was conducted in this setting as
numerical data were unavailable in the primarily qualitative studies. Mainly nominal data
from the available articles were analyzed.

3. Results

In total, 321 studies were initially identified. Duplicates (n = 3) were removed. Thus,
the remaining 318 articles were screened. Reasons for a preliminary exclusion were mainly
titles that did not address the research question or were written in a language other than
English. A total of 67 articles were excluded. The remaining 251 articles were screened first
by abstract, then by full text. Studies were excluded based on the exclusion criteria, e.g.,
reviews, low-grade gliomas, other tumor types, or animal experiments. Available reviews
on this topic were primarily excluded but were searched in a secondary step for valuable
literature in the references. Thus, an additional 30 articles of potential relevance were found.
These articles went through the same screening process so that a total of 22 more articles
were identified here. A total of 43 articles were included in this systematic review. The flow
chart of data selection is shown in Figure 1.
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Figure 1. PRISMA flow chart for the systematic review detailing the database searches, the number
of records screened, and the studies included.

Articles were published between 2011 and 2021. The study’s authors, year of pub-
lication, molecular parameters, radiological sequences, feature types, and utilization of
machine learning are presented in Table 2.
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Table 2. Literature review table.

Author Year Patients
(n)

Molecular Parameters
of Interest

Radiological Sequences
of Interest

ML
Approach

(Classification/Prediction)

Zinn et al. [70] 2011 52 Gene- and micro-RNA
expression, molecular subtypes

T1w, T1CE, T2w, FLAIR,
PD, SPGR No

Pope et al. [71] 2012 16 IDH1 MRS No

Carrillo et al. [72] 2012 202 IDH1, MGMT T1w, T1CE, T2w No

Ellingson et al. [73] 2012 258 MGMT T1w, T1CE, T2w, FLAIR No

Jamshidi et al. [74] 2013 23 Global mRNA expression and
DNA copy number profiles T1w, T2w No

Naeini et al. [75] 2013 46 Mesenchymal subtype T2w, FLAIR No

Gutman et al. [76] 2013 75 Verhaak’s molecular subtypes T1w, T1CE, T2w, FLAIR No

Ellingson et al. [77] 2013 507 IDH1, MGMT, EGFR, PTEN T1w, T1CE, T2w, FLAIR No

Ahn et al. [78] 2014 43 MGMT T1w, T1CE, T2w, DWI (ADC,
FA), DCE-MRI (Ktrans, Kep, Ve) No

Gavaert et al. [79] 2014 55 Molecular subtypes
General gene expression T1w, T1CE, T2w, FLAIR No

Rundle-Thiele
et al. [80] 2015 32 MGMT DWI (ADC) No

Arevalo-Perez
et al. [81] 2015 82 EGFR amplification/EGFRvIII

status
T1CE, DCE-MRI (Ktrans,

VP, rVP) No

Gupta et al. [82] 2015 106 EGFR amplification/EGFRvIII
mutation

T2* DSC Perfusion (rCBV,
rPH, PSR) No

Itakura et al. [83] 2015 265 Multiple signaling pathways,
MGMT, EGFR, IDH-1, PDGFRA T1CE kCC

Yamashita
et al. [84] 2016 66 IDH 1, MGMT T1w, T1CE, T2w, FLAIR, ASL

(CBF), DWI (ADC) No

Macyszyn
et al. [85] 2016 134 Verhaak’s molecular subtypes

T1w, T1CE, T2w, FLAIR, DWI
(FA, RAD, AD, TR), DSC-MRI

(rCBV, PH, PSR)
SVM

Kickingereder
et al. [86] 2016 152

Molecular subtypes, MGMT,
EGFR, PDGFRA, MDM4, CDK4,

PTEN, CDK2A, NF1, Rb1

T1w, T1CE, T2w,
FLAIR, DWI (ADC),

DSC-MRI (nrCBV, nrCBF), SWI
sGBM, RFC, PLR

Korfiatis et al. [87] 2016 155 MGMT T1w, T1CE, T2w SVM, RFC

Heiland et al. [88] 2017 21 EMT pathway activation T1w, T1CE, T2w, DWI (FA, MD,
AD, RD) No

Liu et al. [89] 2017 41
Ki-67 labeling index, mTOR

activation, EGFR amplification,
IDH mutation, TP53

T1w, T1CE, T2w, FLAIR,
DSC-MRI (CBV, rCBV) No

Hu et al. [90] 2017 48 EGFR, PDGFRA, PTEN,
CDKN2A, RB1, TP53

T1w, T1CE, DSC-MRI (rCBV),
DWI (FA, MD,

isotropic/anisotropic diffusion)
DTM

Kickingereder
et al. [91] 2017 181 MGMT T1w, T1CE, FLAIR LASSO

Bosnyák et al. [92] 2018 21 EGFR, MGMT, IDH1 T1w, T1CE, T2w, FLAIR,
AMT-PET No

Liang et al. [93] 2018 102 IDH genotype T1w, T1CE, T2w, FLAIR CNN

Beig et al. [94] 2018 115 Hypoxia-associated genes T1CE, T2w, FLAIR RFC

Akbari et al. [95] 2018 129 EGFRvIII
T1w, T1CE, T2w

FLAIR, DWI (ADC, AD, RD,
FA), DSC-MRI (rCBV, PH, PSR)

SVM

Neyra et al. [96] 2018 131
IDH1, MGMT, EGFR, PDGFRA,

MDM2, MET, CDK6, TERT,
MYCN, NF1, CCND2

T1w, T1CE, T2w, FLAIR No
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Table 2. Cont.

Author Year Patients
(n)

Molecular Parameters
of Interest

Radiological Sequences
of Interest

ML
Approach

(Classification/Prediction)

Bakas et al. [97] 2018 142 EGFRvIII T1CE, FLAIR, DWI (FA, RD,
AC, TR), DSC-MRI No

Hong et al. [98] 2018 176 IDH1, MGMT, ATRX T1w, T1CE, T2w, DWI (ADC),
DSC-MRI (CBV) No

Altieri et al. [99] 2018 178 IDH1, Ki-67, MGMT T1CE No

Li et al. [100] 2018 193 MGMT T1w, T1CE, T2w,
FLAIR RFC

Rathore et al. [101] 2018 261 Verhaak’s molecular subtypes,
IDH-1, MGMT, EGFRvIII

T1w, T1CE, T2w,
FLAIR, DWI (FA, AD, RD, TR),

DSC-MRI (rCBV, PH, PSR),
DCE-MRI

SVM

Li et al. [102] 2019 109 PTEN status T1w, T1CE, T2w SVM

Binder et al. [103] 2019 260 EGFR, MGMT, IDH
T1w, T1CE, T2w, DWI (ADC,

FA, AD, RD), DSC-MRI (rCBV,
PH, PSR)

SVM

Le et al. [104] 2020 53 MGMT, IDH1 T1w, T1CE, T2w, FLAIR XGBoost, kNN, RFC, SVM

Zhang et al. [105] 2020 60 MGMT, IDH, TERT, BRAF T1w, T1CE, T2w No

Park et al. [106] 2020 120
EGFR, PDGFRA, MDM2, CDK4,

PTEN, p53, CDKI2A,
RB1, PIK3CA

T1w, T1CE, T2w, FLAIR, DWI
(ADC), DSC-MRI (rCBV, nCBV) RFC, LRC

Tian et al. [107] 2020 126 TERT T1w, T1CE, T2w, FLAIR, MRS LRC

Choi et al. [108] 2020 144 MGMT, IDH T1w, T1CE, T2w, FLAIR LASSO-Cox

Beig et al. [109] 2020 203 IDH, MGMT T1CE, T2w, FLAIR LASSO-Cox

Zheng et al. [110] 2020 3800
SOCS3, ANGPT1, ANGPT2,
FLT1, PECAM1, TEK, TIE1,
VEGFA, NRP1, and KDR

DSC-MRI, DCE-MRI No

Beig et al. [111] 2021 147 MGMT, IDH T1CE, T2w, FLAIR LASSO-Cox

Nuechterlein
et al. [66] 2021 46 IDH1/2-wildtype T1w, T1CE, T2w, FLAIR LASSO. SVM, MLP,

XGBoost, RFC, LRC

Abbreviations: AD, axial diffusivity; ADC, apparent diffusion coefficient; AI, artificial intelligence; AMT, α-[11C]-
Methyl-l-tryptophan; ANGPT1, angiopoietin-1; ANGPT2, Angiopoietin-2; ATRX, alpha-thalassemia/mental
retardation syndrome X-linked; CCND2, cyclin D2; CDK2A, cyclin-dependent kinase inhibitor 2A; CDK4, cyclin-
dependent kinase 4; CDK6, cell division protein kinase 6; CNN, convolutional neural network; DCE, dynamic
contrast enhanced; DSC, dynamic susceptibility contrast; DTM, decision tree model; DWI, diffusion weighted
imaging; EGFR, epidermal growth factor receptor; EGFRvIII, epidermal growth factor receptor variant III; EMT,
epithelial–mesenchymal transition; FA, fractional anisotropy; FLAIR, fluid-attenuated inversion recovery; FLT1,
Fms-related receptor tyrosine kinase 1; IDH, isocitrate dehydrogenase; kCC, k-means consensus clustering;
KDR, kinase insert domain receptor; KEP, rate transfer coefficient; Ki-67, Kiel-antigen Nr. 67; kNN, k-nearest
neighbors; Ktrans, transfer constant; LASSO, least absolute shrinkage and selection operator; LASSO-Cox, L1-
norm regularized Cox proportional hazard model; LRC, logistic regression classifier; MDM2, murine double
minute 2; MET, mesenchymal–epithelial transition factor; MGMT, O6-methylguanine-DNA methyl-transferase;
ML, machine learning; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; mTOR,
mammalian target of rapamycin; MYCN, v-myc myelocytomatosis viral-related oncogene, neuroblastoma derived;
NF1, neurofibromatosis 1; nrCBF, normalized relative cerebral blood flow; nrCBV, normalized relative cerebral
blood volume; NRP1, neuropilin-1; PD, proton density; PDGFRA, platelet-derived growth factor receptor A;
PECAM1, platelet endothelial cell adhesion molecule; PLR, penalized logistic regression; PET, positron emission
tomography; PSR, percentage signal recovery; PTEN, phosphatase and tensin homologue; RAD, radial diffusivity;
RB1, retinoblastoma protein; rCBV, relative blood volume; RFC, random forest classifier; rPH, relative peak
height; rVP, relative plasma volume; sGBM, stochastic gradient boosting machine; SOCS3, suppressor of cytokine
signaling 3; SPGR, spoiled gradient recalled acquisition; SVM, support vector machine; SWI, susceptibility
weighted imaging; T1CE, T1-weighted contrast-enhancement imaging; T1w, T1-weighted imaging; T2w, T2-
weighted imaging; TEK, endothelial tyrosine kinase; TERT, telomerase reverse transcriptase; TIE1, tyrosine kinase
with immunoglobulin-like and EGF-like domains 1; TP53, tumor protein 53; TR, Trace; Ve, volume fraction of
extravascular extracellular space; VEGFA, vascular endothelial growth factor A; VP, plasma volume.

A retrospective study design was predominant (88.37%, n = 38). In total, 9176 patients
were involved. A heterogeneous, polarizing pattern of cohort sizes, ranging from 6 to
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3800 (mean value 382.3, SD 1360.53) was evident. The most evaluated parameters were
MGMT (n = 22), IDH (n = 19), EGFR (n = 14), and GBM molecular subgroups (classic, cystic,
mesenchymal, and proneural subtype, n = 6). Other tumor markers included phosphatase
and tensin homolog (PTEN, n = 5), platelet-derived growth factor receptor A (PDGFRA,
n = 5), tumor protein 53 (TP53, n = 3), telomerase reverse transcriptase (TERT, n = 3), mouse
double minute 2 (MDM2, n = 3), retinoblastoma protein 1 (RB1, n = 3), Ki (Kiel)-antigen
Nr. 67 (Ki-67, n = 2), mRNA (n = 2), signaling pathways (n = 2), cyclin dependent kinase 4
(CDK4, n = 2), Cyclin Dependent Kinase Inhibitor 2A (CDKN2A, n = 2), neurofibromatosis
type 1 gene (NF1, n = 2), epithelial–mesenchymal transition (EMT) pathway activation
(n = 1), and mechanistic target of rapamycin (mTOR, n = 1).

In addition, the frequency of the radiological MRI sequences used was evaluated.
Here, the most frequent sequences were T1 weighted with (n = 37) and without contrast
agent (n = 31), as well as T2-weighted MR sequences (n = 33) and fluid-attenuated inversion
recovery (FLAIR) sequences (n = 26). Other methods included diffusion-weighted imaging
(DWI, n = 13), incorporating in part parameters such as apparent diffusion coefficient (ADC),
fractional anisotropy (FA), radial and axial diffusivity (AD/RD), dynamic susceptibility
imaging (DSC, n = 12), partially using cerebral blood volume (CBV), cerebral blood flow
(CBF), peak height (PH), percentage signal recovery (PSR). Less commonly used modalities
were dynamic contrast-enhanced imaging (DCE, n = 4), MR spectroscopy (MRS, n = 2),
arterial spin labeling (ASL, n = 1), susceptibility weighted imaging (SWI, n = 1), proton
density (PD, n = 1), spoiled gradient recalled (SPGR) acquisition (n = 1) and α-[11C]-methyl-
L-tryptophan PET (AMT-PET, n = 1).

3.1. Studies Assessing the Radiogenomic Prognosis

Five of 43 articles were identified as prospective studies with a total of 321 pa-
tients [71,85,88,92,95]. In addition to these articles, other authors also pointed out prognostic
implications. [70,73,76,89,105,109]. Evaluations of a retrospective and prospective cohort of
patients with newly diagnosed glioblastoma showed that older age, the volume of contrast-
enhancing tumor, edema volume, and relatively short distance between the tumor and
ventricular system were predictive of shorter survival. In addition, survival was shortened
with a relatively high number of voxels of high T1 contrast enhancement intensity, low T2
intensity, high peak height (PH), and low trace (TR) [85]. Heiland et al. demonstrated a
strong link between fractional anisotropy (FA) and the epithelial-to-mesenchymal transition
(EMT) pathway using network analysis. A high FA correlated with a worse clinical out-
come. In contrast, high mean diffusivity (MD) correlated with more prolonged survival [88].
Furthermore, a correlation between a high AMT tumor/cortex uptake ratio on PET and
prolonged survival could be observed [92]. Concerning gene and mRNA expression in
glioblastoma, Kaplan–Meier curves showed that periostin (POSTN) expression resulted in
significantly shorter survival and time to progression [70]. Approaching of the tumor to
ADIFFI (analysis of differential involvement)-classified regions in the left temporal lobe
significantly prolonged the survival rate [73]. The contrast-enhancing region of the tumor
and longest axis length of the tumor were also associated with poor survival [76]. Perfusion
imaging showing a high ratio of peri-enhancing tumor area (rCBVperi-tumor) was found
in patients with overall survival of less than 14 months. Moreover, the strongest predictors
of overall survival were rCBVperi-tumor and age [89].

3.2. Studies Assessing the MGMT Methylation Status

Twenty-two out of 43 articles (including 3688 patients) assessed the MGMT methy-
lation status in connection with specific radiological characteristics [72,73,77,78,80,83,
84,86,87,91,92,96,98–101,103–105,108,109,111]. In T2/FLAIR images, MGMT promoter-
methylated tumors were shown to have a lower hyperintense tumor volume, in contrast
to unmethylated tumors [73]. Additionally, elevated transfer constant (Ktrans) levels in
MGMT-methylated tumors were observed in MR perfusion [78]. In diffusion imaging,
increased minimum ADC values were more likely in MGMT-methylated tumors. A sig-
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nificant reduction in the mean measure of the low ADC value in the two-mixture model
histogram seemed to be associated with methylated tumors as well [80]. Metabolic volume
and tumor/cortex AMT unidirectional uptake ratios were lower in MGMT-methylated
tumors [92]. A significant association between MGMT-methylated tumors and grade of
radiographic necrosis was furthermore demonstrated [105].

3.3. Studies Assessing the IDH Mutation Status

Nineteen out of 43 articles (including 2875 patients) examined the IDH status in rela-
tion to radiologic characteristics [66,71,72,77,83,84,89,92,93,96,98,99,101,103–105,108,109,111].
Using MR spectroscopy, increased levels of 2-hydroxyglutarate (2-HG), the product of the
neomorphic IDH enzyme activity, were found in IDH1 mutant tumors. The analysis also
showed an increase in measured choline and decreased glutathione levels in IDH1 mutant
tumors [71]. There was evidence that IDH1 mutant tumors were non-contrast enhancing
tumor (nCET) positive. Tumor size and nCET could be used to determine IDH1 mutated
tumors with an accuracy of 97.5% [72]. In contrast to a correlation of MGMT methylation
and minimum ADC maps [80], Yamashita et al. did not find a significant difference in
differentiation between wild-type IDH1 tumor and mutant IDH1 status in their study.
However, a significant increase in absolute tumor blood flow, relative tumor blood flow,
necrosis area, and percentage of cross-sectional necrosis area inside the enhancing lesion
was observed [84]. Moreover, a larger tumor volume in T2-weighted sequences and a
higher volume ratio between T2w and T1 sequences with contrast agents were observed in
IDH mutant tumors. Additionally, higher mean normalized apparent diffusion coefficient
(ADC) values were seen in these tumors [98].

3.4. Studies Assessing the EGFR Status

Fourteen out of 43 articles (including 2265 patients) assessed EGFR or epidermal growth fac-
tor receptor variant III (EGFRvIII) status in GBM patients [77,81–83,86,89,90,92,95–97,101,103,106].
A positive EGFRvIII status, an increased relative plasma volume (rVP), and increased
relative contrast transfer coefficient parameters were revealed [81]. Furthermore, higher
median relative cerebral blood volume (rCBV) and lower percentage signal recovery (PSR)
levels were seen in MR perfusion, which was associated with high levels of EGFR am-
plification. In addition, higher median relative peak height (rPH) levels were associated
with EGFRvIII mutation [82]. Bosnyák et al. described lower T1 contrast-enhancing tumor
volume, lower T1 contrast/T2 volume, and T1 contrast/PET volume ratios associated with
EGFR amplification [92]. Similarly, higher levels of relative contrast enhancement were
seen in the presence of EGFR mutations at alanine 289 (EGFRA289D/T/V). Lower T1 and
increased T2 signals were also detected in the enhancing tumor region [103].

3.5. Studies Assessing the Molecular Subtypes

Overall, seven out of 43 articles involving 775 patients investigated radiogenomic as-
sociations related to glioblastoma molecular subtypes [70,75,76,79,85,86,101]. High POSTN
and low miR-219 expression could be significantly associated with the mesenchymal GBM
subtype [70]. Differences in image morphology were evident with respect to the volume of
contrast enhancement, the volume of central necrosis, the combined volume of contrast
enhancement and central necrosis, and necrosis concerning the distinction of the mesenchy-
mal and non-mesenchymal subtypes. The volume ratio of T2-weighted hyperintensity to
contrast enhancement and central necrosis was significantly lower in the mesenchymal
glioblastoma subtype [75]. Similarly, the proneural class showed significantly lower levels
of contrast uptake compared to other subtypes. The mesenchymal subtype showed low
levels of non-enhanced tumor [76].

3.6. Studies Assessing the Tumor Location

Seven of 43 articles (involving 1557 patients) were able to provide an additional link
between radiogenomic markers and tumor location [72,73,77,86,95,96,99]. There was a
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correlation between nCET positive IDH1 mutant tumors, 79% localized in the frontal
lobe [72]. MGMT-methylated tumors having a lower T2/FLAIR volume were localized in
the left hemisphere. In contrast, MGMT-unmethylated tumors appeared to be localized
in the right hemisphere. T2/FLAIR hyperintense signaling increases frequently occurred
in the posterior subventricular zone [73]. Another study showed frequent localization of
MGMT methylated tumors in the left temporal lobe. For example, localization in the frontal
lobe was seen with younger age, IDH1 mutated tumors, and loss of PTEN. Moreover,
in the frontal lobe, localized in the left hemisphere, MGMT-methylated, IDH1-mutated
glioblastomas appeared [77]. EGFR amplified, and EGFRvIII-expressing tumors were most
common in the left temporal lobe. EGFRvIII-positive tumors occurred more frequently in
the frontal and parietal lobe areas than EGFRvIII-negative tumors [95]. Altieri et al. showed
a predictive value for left hemisphere occurrence at low Ki-67 levels and IDH1 mutations
occurring in the right hemisphere. IDH wild-type glioblastomas appeared to be localized
in the temporal lobe. MGMT-methylated tumors occurred mainly in the parietal lobe,
whereas unmethylated glioblastomas were localized in the insula [99]. Figure 2 illustrates
radiogenomic tumor localizations.
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Figure 2. Tumor localization based on tumor-associated parameters. MGMT-methylated tumors
and tumors with a lower Ki-67 value were lateralized to the left hemisphere. In contrast, MGMT-
unmethylated tumors and tumors with mutation of IDH1 were found to be lateralized to the right
hemisphere. IDH1-mutant tumors were located in the frontal lobe, whereas IDH wild-type tumors
were located in the frontal and temporal lobes. Tumors with the proneural gene expression subtype
and tumors with an absent loss of PTEN frequently occurred in the frontal lobe. MGMT-methylated
tumors were located in the (left) frontal and left temporal lobes. In contrast, MGMT-unmethylated
tumors were located in the insular lobe. Tumors revealing EGFR amplification and EGFRvIII-mutated
tumors involved the frontal, left temporal and parietal regions. Temporal location was associated
with IDH wild-type tumors. Abbreviations: EGFR+, EGFR amplification; EGFRvIII+, EGFRvIII
mutation; IDH1+, IDH1 mutation; IDH-wt, IDH wildtype; Ki-67, Kiel-antigen Nr.67; MGMT-, MGMT
promotor unmethylated; MGMT+, MGMT promotor methylated.

4. Discussion
4.1. Summary of Findings

Numerous tumor-related molecular markers are used to monitor the treatment of
patients with GBM, thereby playing a role in improving diagnostic accuracy, assessing
prognosis, and predicting treatment response. The newly established WHO CNS tumor
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classification 2021 places higher importance on molecular markers than all other previous
classifications [11]. In this review, the recent advantages in correlating tumor-associated
molecular parameters with imaging phenotypes were highlighted, thereby exhibiting
correlative prognostic capabilities of radiogenomics.

MGMT promoter methylation has clinical relevance in the prediction of chemotherapy
responsiveness to TMZ [112,113]. MGMT-methylated tumors showed less T2/FLAIR hyper-
intense volume [73,77] and lower volume contrast enhancement [77] which was associated
with the extent of radiographic necrosis [105]. However, Kickingereder et al. described a
higher ratio of contrast-enhancing tumor volume (T1CE) to the complete volume (T1w) [86].
Further associations included higher Ktrans [78], higher relative CBV [86], lower metabolic
volume, lower tumor/cortex AMT unidirectional uptake ratios on PET imaging [92], and
elevated minimum ADC [80].

IDH1 mutation represents a significant independent factor in predicting longer OS
and PFS in patients with GBM [114]. IDH1-mutant tumors revealed elevated levels of 2-HG,
a decreased glutathione, and elevated choline in MRS [71]. IDH-mutated tumors revealed
higher nADC values, larger volumes in T2w imaging, and a higher ratio between T2w and
T1CE [98]. In contrast, IDH wild-type tumors demonstrated larger volumes of contrast
enhancement [77], higher blood flow, increased necrotic areas, and a higher percentage of
cross-sectional necrosis inside the enhancing lesion [84].

Amplification and alteration of EGFR are frequently observed in GBM, resulting in
overexpression of several mutations, including EGFRvIII [41], and was shown to be a
predictor of poor prognosis in OS [40,41]. EGFR amplifications were associated with a
higher T1CE and T2/FLAIR hyperintense volume [77]. Conversely, Bosnyák et al. found
lower T1CE contrast volumes, lower T1 contrast/T2 volume, and T1 contrast/PET volume
ratios [92]. EGFR amplification correlated with a higher median rCBV and lower PSR [82],
increased rCBF and rCBV [86,89], and a higher Ki-67 labeling index [92]. EGFRvIII expres-
sion of tumors was associated with increased rVP [81], relative ktrans [81], higher median
rPH [82,101], higher rCBV [95,101], FA [101], elevated mean PH within the enhancing
tumor [101], and lower ADC signals [95].

Identification of GBM subtypes is of high importance for prognosis as they exhibit
different clinical outcomes and molecular features [115]. The mesenchymal subtype was
characterized by a high FLAIR signal associated with upregulated levels of POSTN [70],
lower ratios of volume of contrast enhancement, and volume of central necrosis [75],
lower levels of non-enhanced tumor [76], and lower rCBV [86]. The classical subtype
revealed associations concerning T2/FLAIR intensity, enhancing tumor size, and PH signal
for edema [79,85] whereas the proneural subtype demonstrated lower levels of contrast
enhancement [76] and associations of T1w and T2/FLAIR intensity in the enhancing tumor
region [85].

Besides individual biological tumor parameters exhibiting prognostic potential, we
identified radiological sequences and tumor locations that were found to be associated
with prognosis individually. A high T1CE signal, low T2w intensity, high PH, and low
trace (TR) were associated with a shortened survival [85]. FA correlated with the activation
of the EMT pathway, thus being associated with a worse clinical outcome [88]. High FLAIR
intensity signal was found to correlate with an upregulated POSTN expression level and
showed a significantly shortened survival [70]. In contrast, a high MD [88] and a high
AMT tumor/cortex ratio on PET corresponded with prolonged survival [92]. A strong
predictor for OS was rCBV in the peritumor region [89]. Concerning their location in the
CNS, tumors in the left temporal lobe were associated with longer OS independent of
treatment and MGMT status [73]. Furthermore, these regions were associated with a more
favorable response to radiochemotherapy and increased survival [77].

4.2. Limitations

Even though all included studies related to molecular and radiological markers focus-
ing on tumor progression in GBM, one major drawback is the methodological heterogeneity
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found across the studies. Besides varying the selection of molecular and radiological
markers, there are several aspects to consider. Due to the lack of standardization in imag-
ing routines and system-related differences across MRI systems and used sequences, one
limitation can be seen in the analysis of the variability and inconsistency in radiological
parameters and features. Whereas the used imaging sequences varied across the study,
scanner-related variabilities need to be considered when comparing those studies or pooling
data in multicenter approaches [116]. In this way, besides other factors, e.g., the magnetic
field strength is known to influence image contrast, noise, and tumor-related measures
such as lesion contrast [117,118]. Furthermore, significant differences in the methodology
could be observed across the included studies, and especially recent ones used AI and ML
approaches. In addition, different software with different algorithms was used.

Radiomics and radiogenomics have been associated with AI and ML, especially in
recent years. Radio(geno)mic studies can be divided into classical (conventional) and novel
approaches with ML [63], representing an essential methodological difference in evaluating
and interpreting the study types, as summarized here. The classical approach contrasts
to machine learning and deep learning radio(geno)mic pipelines, where images are pro-
cessed, and features are automatically extracted and related. In the classical approach, the
observer’s regions of interest are manually or automatically delineated, and hand-granted
features are extracted [63]. Image-derived features are processed, and statistical models
like univariate or multivariate analyses are used to calculate mathematical relationships
between variables and outcomes [63]. Several of our included studies feature ML and AI
algorithms, of which the results cannot be extrapolated for the observer in contrast to the
classical radiogenomic approach. Therefore, the results of the individual studies in this
review must be interpreted with caution.

4.3. Clinical Relevance

In the future, prospective patient cohorts may provide systemic data acquisition
concerning radiologic and histopathologic markers. Information on genetic profiles with
various biomarkers, structural and functional MR imaging characteristics, and clinical
responses related to the type of surgery, could be analyzed. Correlations of these will
be analyzed to obtain predictive radiogenomic markers for the prognosis of patients
with GBMs with regard to progression, recurrence, and malignancy, enabling them to
be used in the future for more personalized and improved treatment planning. This
includes a multi-dimensional multi-omic characterization of tumors, i.e., by integrating
genomic, proteomic, and radiomic data. To optimize prognosis as well as clinical therapy
decisions, there is a need to identify patients at an early stage who are at increased risk
for recurrent tumors or low therapeutic success. Relevant radiogenomic characteristics of
gliomas can be determined, intratumoral heterogeneity in imaging can be compared with
intratumoral genetic heterogeneity, and the differences between primary and secondary
glioblastomas as well as markers of tumor angiogenesis can be elaborated. In addition to
determining relevant predictive radiogenomic markers for the progression and recurrence
of brain-derived tumors, determining prognostically relevant radiogenomic markers, and
the formulation of a standard protocol for imaging follow-up concerning the biological
characteristics of the tumor, this data collection could allow further analyses. A broad-
spectral database thereby created, in conjunction with patients systematically followed up
to recurrence, could provide radiogenomic information to identify early tumor recurrence.
Such high-risk patients could be monitored more closely in the future, and therapeutic
interventions could be considered earlier. Furthermore, a statistically evaluated database
of radiogenomic associations can be used for a prognostic scoring system that will be
implemented clinically. Similarly, stem cells could be isolated, and different therapy arms
(e.g., chemotherapy with temozolomide and radiation) could be analyzed in this regard
to achieve improved prognosis and therapy decisions for each patient individually on a
broad basis.
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4.4. Future Directions

Glioblastoma remains in its position as a clinically difficult tumor to treat, yet recent
years have demonstrated a steady improvement in imaging modalities, especially in MRI.
Attempts to incorporate increasing autonomy into imaging processing programs using
AI to create initial prognostic determinations are rising. Radio(geno)mics offers a strong
upward trend in recent years and may offer a personalized revolutionary approach in GBM.
Likewise, advances in machine learning and deep learning approaches could be observed.
New reviews in this field have focused on ML and deep learning approaches [67]. However,
in contrast to other reviews, we focused on both classical to machine learning approaches.
Our primary objective was to provide a comprehensive summary of radiological parameters
and molecular tumor characteristics, thus enabling risk stratification rather than focusing
on other aspects such as therapeutic options.

Machine learning algorithms for program-controlled, non-invasive detection of ra-
diogenomic markers in IDH and EGFR in low-grade gliomas and glioblastomas showed
success rates of over 80% [101]. Similarly, experiments using anomaly detection analytics de-
tected IDH mutations in glioblastomas using preoperative T1-weighted MR sequences [119].
A neural network-based approach using high-dimensional gene expression data to perform
non-linear mapping to imaging traits also showed that imaging features of the tumor
exhibited specific transcriptional patterns [120]. Using a hypercolumn-based convolutional
network to segment tumor regions from MRI images and extract radiological features
such as geometry, shape, and histogram, and finally to fuse them with gene expression
profiling data represents another attempt to predict patient survival rates. In this context,
the most essential genes identified were, for example, interleukin-1β, KLHL4, ATP1A2,
IQGAP2, and TMSL8, which strongly contribute to prognostic analysis [121]. To predict
progression-free survival and recurrence, the Cancer Imaging Phenomics Toolkit (CaPTk)
software suite was further used to analyze standard clinical multiparametric MRI scans
of the brain. Predictive signatures based on various classification schemes were evalu-
ated. These predictors also generated high predictability of the timing and location of
recurrence [122]. At the tumor microenvironment level, machine learning-based magnetic
resonance radiomodeling was developed to classify immune phenotypes in glioblastoma,
which assessed the enrichment levels of four immune subsets. Five immunophenotypes
were identified that could also predict patient prognosis [123]. Using a deep learning
pipeline to predict MGMT status in glioblastoma patients automatically showed good
predictive performance. Using FLAIR images, better status prediction and tumor segmen-
tation could be reached [124]. An essential goal of radiogenomics is to provide prognostic
information regarding invasiveness, recurrence, and survival early in the clinical patient
course. Many studies can be found in the literature using multicenter databases, for exam-
ple, The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA). In the
future, there is still a lack of clinical, prospective studies that follow up patients with fixed
examination times until recurrence, collecting different radiological and tumor biological
characteristics at the respective follow-up times, which are finally evaluated by biostatistics
using an extensive database.

5. Conclusions

The present review provides a broad and informative state-of-the-art picture and
illustrates the latest developments in radiogenomic markers with regard to prognosis and
their potential monitoring for GBM recurrence. By linking tumor biology parameters with
phenotypic characteristics in MR imaging on a patient-specific basis, a significant trend
towards a personalized approach is emerging. However, prospective studies analyzing
radiogenomic features of glioblastoma are lacking. New information providing answers
to prognosis and recurrence early in the course of the disease could provide new clinical
implications for individual management and treatment strategies in GBM patients, who
are up to now still faced with a poor prognosis and outcome.
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Appendix A

Table A1. PubMed, Google Scholar, and Cochrane Library search strategies.

Database: PubMed
The search strategy for Title/Abstract terms used a combination of subject headings (MeSH terms)
and keywords:
Search Strategy:

#1 “GBM”[All fields]
#2 “Glioblastoma”[Mesh]
#3 “Glioma *”[Mesh]
#4 “glioblastoma *”[All fields]
#5 “glioblastoma multiforme”[All Fields]
#6 #1 OR #2 OR #3 OR #4 OR #5
#7 “Imaging Genomic *” [Mesh]
#8 “Radiogenomic *”[All Fields]
#9 #7 OR #8

#10 #6 AND #9
Database: Google Scholar
Search Strategy with keywords:

1 “glioma”
2 “glioblastoma”
3 “imaging genomics”
4 “radiogenomics”

Full search: “glioma” “glioblastoma” “imaging genomics” “radiogenomics
Database: Cochrane Register.
Search Strategy

#1 Radiogenomic *
#2 Glioma *
#3 #1 AND #2
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Table A2. PRISMA 2020 for Abstracts Checklist.

Section and Topic Item # Checklist Item Reported (Yes/No)

Title

Title 1 Identify the report as a systematic review. Yes

Background

Objectives 2 Provide an explicit statement of the main objective(s) or question(s)
the review addresses. Yes

Methods

Eligibility criteria 3 Specify the inclusion and exclusion criteria for the review. Yes

Information sources 4 Specify the information sources (e.g., databases, registers) used to
identify studies and the date when each was last searched. Yes

Risk of bias 5 Specify the methods used to assess risk of bias in the
included studies. No

Synthesis of results 6 Specify the methods used to present and synthesise results. Yes

Results

Included studies 7 Give the total number of included studies and participants and
summarise relevant characteristics of studies. Yes

Synthesis of results 8

Present results for main outcomes, preferably indicating the
number of included studies and participants for each. If
meta-analysis was done, report the summary estimate and
confidence/credible interval. If comparing groups, indicate the
direction of the effect (i.e., which group is favoured).

No

Discussion

Limitations of evidence 9
Provide a brief summary of the limitations of the evidence
included in the review (e.g., study risk of bias, inconsistency
and imprecision).

Yes

Interpretation 10 Provide a general interpretation of the results and
important implications. Yes

Other

Funding 11 Specify the primary source of funding for the review. No

Registration 12 Provide the register name and registration number. No

Table A3. PRISMA 2020 Checklist.

Section and Topic Item # Checklist Item Location Where
Item Is Reported

Title

Title 1 Identify the report as a systematic review. Page 1

Abstract

Abstract 2 See the PRISMA 2020 for Abstracts checklist. Page 1

Introduction

Rationale 3 Describe the rationale for the review in the context of existing
knowledge. Page 4

Objectives 4 Provide an explicit statement of the objective(s) or question(s) the
review addresses. Pages 1–4

Methods

Eligibility criteria 5 Specify the inclusion and exclusion criteria for the review and how
studies were grouped for the syntheses. Page 4

Information sources 6
Specify all databases, registers, websites, organisations, reference lists
and other sources searched or consulted to identify studies. Specify
the date when each source was last searched or consulted.

Page 4
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Table A3. Cont.

Section and Topic Item # Checklist Item Location Where
Item Is Reported

Search strategy 7 Present the full search strategies for all databases, registers and
websites, including any filters and limits used. Page 4

Selection process 8

Specify the methods used to decide whether a study met the
inclusion criteria of the review, including how many reviewers
screened each record and each report retrieved, whether they worked
independently, and if applicable, details of automation tools used in
the process.

Page 4

Data collection process 9

Specify the methods used to collect data from reports, including how
many reviewers collected data from each report, whether they
worked independently, any processes for obtaining or confirming
data from study investigators, and if applicable, details of
automation tools used in the process.

Page 4

Data items

10a

List and define all outcomes for which data were sought. Specify
whether all results that were compatible with each outcome domain
in each study were sought (e.g., for all measures, time points,
analyses), and if not, the methods used to decide which results
to collect.

Page 4–5

10b

List and define all other variables for which data were sought (e.g.,
participant and intervention characteristics, funding sources).
Describe any assumptions made about any missing or unclear
information.

Page 4–5

Study risk of bias
assessment 11

Specify the methods used to assess risk of bias in the included
studies, including details of the tool(s) used, how many reviewers
assessed each study and whether they worked independently, and if
applicable, details of automation tools used in the process.

n.a.

Effect measures 12 Specify for each outcome the effect measure(s) (e.g., risk ratio, mean
difference) used in the synthesis or presentation of results. n.a.

Synthesis methods

13a

Describe the processes used to decide which studies were eligible for
each synthesis (e.g., tabulating the study intervention characteristics
and comparing against the planned groups for each synthesis
(item #5)).

Page 5

13b
Describe any methods required to prepare the data for presentation
or synthesis, such as handling of missing summary statistics, or data
conversions.

n.a.

13c Describe any methods used to tabulate or visually display results of
individual studies and syntheses. n.a.

13d

Describe any methods used to synthesize results and provide a
rationale for the choice(s). If meta-analysis was performed, describe
the model(s), method(s) to identify the presence and extent of
statistical heterogeneity, and software package(s) used.

n.a.

13e
Describe any methods used to explore possible causes of
heterogeneity among study results (e.g., subgroup analysis,
meta-regression).

n.a.

13f Describe any sensitivity analyses conducted to assess robustness of
the synthesized results. n.a.

Reporting bias
assessment 14 Describe any methods used to assess risk of bias due to missing

results in a synthesis (arising from reporting biases). n.a.

Certainty assessment 15 Describe any methods used to assess certainty (or confidence) in the
body of evidence for an outcome. n.a.
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Table A3. Cont.

Section and Topic Item # Checklist Item Location Where
Item Is Reported

Results

Study selection
16a

Describe the results of the search and selection process, from the
number of records identified in the search to the number of studies
included in the review, ideally using a flow diagram.

Page 5

16b Cite studies that might appear to meet the inclusion criteria, but
which were excluded, and explain why they were excluded. n.a.

Study characteristics 17 Cite each included study and present its characteristics. Pages 6, 9

Risk of bias in studies 18 Present assessments of risk of bias for each included study. n.a.

Results of individual
studies 19

For all outcomes, present, for each study: (a) summary statistics for
each group (where appropriate) and (b) an effect estimate and its
precision (e.g., confidence/credible interval), ideally using structured
tables or plots.

Pages 9–12

Results of syntheses

20a For each synthesis, briefly summarise the characteristics and risk of
bias among contributing studies. n.a.

20b

Present results of all statistical syntheses conducted. If meta-analysis
was done, present for each the summary estimate and its precision
(e.g., confidence/credible interval) and measures of statistical
heterogeneity. If comparing groups, describe the direction of
the effect.

n.a.

20c Present results of all investigations of possible causes of
heterogeneity among study results. n.a.

20d Present results of all sensitivity analyses conducted to assess the
robustness of the synthesized results. n.a.

Reporting biases 21 Present assessments of risk of bias due to missing results (arising
from reporting biases) for each synthesis assessed. n.a.

Certainty of evidence 22 Present assessments of certainty (or confidence) in the body of
evidence for each outcome assessed. n.a.

Discussion

Discussion

23a Provide a general interpretation of the results in the context of
other evidence. Page 12

23b Discuss any limitations of the evidence included in the review. Page 13
23c Discuss any limitations of the review processes used. Page 13

23d Discuss implications of the results for practice, policy, and
future research. Pages 13–14

Other Information

Registration and
protocol

24a
Provide registration information for the review, including register
name and registration number, or state that the review was
not registered.

Page 4

24b Indicate where the review protocol can be accessed, or state that a
protocol was not prepared. n.a.

24c Describe and explain any amendments to information provided at
registration or in the protocol. n.a.

Support 25 Describe sources of financial or non-financial support for the review,
and the role of the funders or sponsors in the review. Page 16

Competing interests 26 Declare any competing interests of review authors. Page 16

Availability of data,
code and other

materials
27

Report which of the following are publicly available and where they
can be found: template data collection forms; data extracted from
included studies; data used for all analyses; analytic code; any other
materials used in the review.

n.a.
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