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Abstract: The aim of this study was to report on the clinical experience with microscope-based
augmented reality (AR) in transsphenoidal surgery compared to the classical microscope-based
approach. AR support was established using the head-up displays of the operating microscope,
with navigation based on fiducial-/surface- or automatic intraoperative computed tomography
(iCT)-based registration. In a consecutive single surgeon series of 165 transsphenoidal procedures,
81 patients underwent surgery without AR support and 84 patients underwent surgery with AR
support. AR was integrated straightforwardly within the workflow. ICT-based registration increased
AR accuracy significantly (target registration error, TRE, 0.76 ± 0.33 mm) compared to the landmark-
based approach (TRE 1.85 ± 1.02 mm). The application of low-dose iCT protocols led to a significant
reduction in applied effective dosage being comparable to a single chest radiograph. No major
vascular or neurological complications occurred. No difference in surgical time was seen, time to
set-up patient registration prolonged intraoperative preparation time on average by twelve minutes
(32.33 ± 13.35 vs. 44.13 ± 13.67 min), but seems justifiable by the fact that AR greatly and reliably
facilitated surgical orientation and increased surgeon comfort and patient safety, not only in patients
who had previous transsphenoidal surgery but also in cases with anatomical variants. Automatic
intraoperative imaging-based registration is recommended.

Keywords: neuronavigation; augmented reality; AR; pituitary adenoma; transnasal; transsphenoidal;
intraoperative computed tomography

1. Introduction

Augmented reality (AR) was first used in neurosurgery in the 1980s and was first
described by Kelly et al. [1] and Roberts et al. [2]. Injecting overlays of additional infor-
mation in the optical image of the operating microscope thereby formed the basis for the
development of new neurosurgical AR devices and finally commercialization of head-up
display (HUD) microscopes in the 1990s, introducing microscope-based AR to the broad
neurosurgical community [3,4]. Initially, AR was most often applied in cranial neurosurgery
using neuronavigation and thus allowing for a real-time AR visualization of additional
information such as outlined lesions or risk structures [5–12]. With the broader availability
of state-of-the-art operating microscopes, this technique was also applied in skull base and
transsphenoidal surgery [13–18].

The transnasal transsphenoidal approach is a common method for the resection of
many pituitary lesions. Supported by lateral fluoroscopy and identification of key land-
mark structures, this allowed for fast and easy orientation making the transsphenoidal
approach a somewhat straightforward procedure. However, due to the limited line of sight,
surgical orientation can especially be difficult in case of anatomical variants such as reduced
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intercarotid artery distance that is more frequently seen in patients with acromegaly [19,20],
anatomic variation of the sphenoid sinus [21], or previous transsphenoidal surgery (adhe-
sion, fibrosis, and obscured/distorted/missing surgical landmarks) [21,22]. As recently
reported, there is also a high inconsistency and wide variation of anatomical landmarks; it
is important to bear this inconsistency in mind when relying only on anatomical landmarks
and also to comprehensively plan the procedure before surgery [23].

Even though transsphenoidal surgery is considered to be safe with an overall low risk
of morbidity or mortality, in a significant number of cases complications occur. In a broad
survey among 3172 neurosurgeons, vascular complications were reported in 1.1%, loss of
vision in 1.8%, and the incidence of cerebrospinal fluid (CSF) fistulas in 3.9% of the cases;
overall mortality was 0.9% [24]. Laws et al. reported a vascular complications in 24 out of
3061 cases (0.78%); 7 were fatal (0.23%) [25].

Considering those perioperative and postoperative obstacles in case of this minimally
invasive transnasal transsphenoidal approach, transsphenoidal surgery seems to be an ideal
candidate for the application of AR support. The aim of the present study was therefore
to report on the clinical experience with microscope-based AR in transsphenoidal surgery
compared to the classical non-navigated microscope-based approach.

2. Materials and Methods

Out of a consecutive series of 165 patients with intra-/supra- and/or parasellar lesions
who had undergone transnasal transsphenoidal surgery performed by a single surgeon
(C. N.) between July 2015 and June 2022, 81 have been operated using a classical non-
navigated microscopic technique whereas the remaining 84 patients have been operated
using neuronavigation and augmented reality support. All individual patients provided
written informed consent. The study was approved by the local ethics committee of the
University of Marburg (no. 99/18). Due to its retrospective character, no further ethical
approval was needed.

2.1. Preoperative Planning

In the case of applying neuronavigation and augmented reality preoperative magnetic
resonance imaging (MRI), such as contrast-enhanced T1-weighted MRI data or time-of-
flight MRI angiography, computed tomography (CT), or CT angiography data is used.
After rigid image registration of all required and available data sets using the image fusion
element (Brainlab, Munich, Germany) the lesion was outlined manually using the Smart
Brush Element (Brainlab, Munich, Germany). In addition, vascular risk structures such
as the carotid arteries were outlined manually (slice-based or threshold-based approach).
In most cases, an automatic delineation of the optic nerves, optic tracts, and chiasm was
provided using the Anatomical Mapping Element (Brainlab, Munich, Germany), in part
being manually reshaped to fit the individual image data.

2.2. Patient Positioning and Registration

In the case of the classical approach in supine position, the patient’s head is positioned
slightly reclined on a closed head ring cushion. Afterwards, the patient’s right leg is
positioned for potential preparation of fascia lata in case of CSF leakage.

In the case of the navigated approach the head is fixed in a metallic head clamp
(fiducial-/surface-based registration) or carbon head clamp (intraoperative CT (iCT)-based
registration) with three metallic pins in a similar fashion with a patient reference array
attached to the head clamp. The patient’s leg is positioned accordingly. Afterwards
patient registration is performed. Standard patient registration was performed either by
preoperatively placing self-adhesive skin markers on the patient’s forehead and acquisition
of 3D CT or MRI data one day before surgery and intraoperatively identifying those
artificial landmarks using the navigation pointer or by using the z-touch (Brainlab, Munich,
Germany) for surface-based registration. Alternatively, patient registration was performed
applying automatic iCT-based registration using a 32-slice mobile CT scanner (AIRO®



J. Clin. Med. 2022, 11, 5590 3 of 14

iCT, Brainlab, Munich, Germany) with three self-adhesive skin markers placed on the
patient’s forehead within the scanning range. Details of this setup and workflow have been
previously reported [26]. For an approximation of effective radiation dosage (ED) a current
ED/dose length product conversion factor of 2.4 µSv/mGy*cm was used [27].

Registration accuracy was performed by calculating a target registration error (TRE) by
either using an artificial landmark that was not part of the registration procedure (fiducial-
based approach) or using the three additional landmarks attached in case of automatic
patient registration.

2.3. Augmented Reality

For the application of augmented reality, the head-up displays (HUDs) of the operating
microscopes, Pentero/Pentero 900/Kinevo 900 (Zeiss, Oberkochen, Germany), were used
with no need for further AR supporting devices (e.g., specific glasses). The operating
microscope was tracked in space using an attached registration array. Calibration of the
AR visualization was inspected by centering the microscope above the central divot of
the patient reference array, showing the spatial alignment of the AR visualization of the
reference array and the optical outline, and adjusting the alignment if necessary.

All outlined objects (lesion, chiasm, optic nerves, optic tracts, and carotid arteries)
can be visualized using the AR display by superimposing the 3D objects in the operating
microscope by the integrated HUDs. Besides AR support, multimodal fused image sets
are visualized in parallel in the Cranial Navigation Element (Brainlab, Munich, Germany)
on a monitor close to the surgical field. Within the Microscope Element (Brainlab, Munich,
Germany) all objects can be visualized (semitransparent or solid mode), e.g., superimposed
on the microscope video or within a probe’s eye views of the registered image data.

2.4. General Setup

In all cases after C-arm radiographic fluoroscopy was used. In most cases, up to the
surgeon’s intraoperative impression, additional endoscope assistance was applied after
exposing the sphenoid sinus and opening the sella floor as well as after removal of the
tumor. An overview of the overall workflow for the AR assisted and classical approach is
provided in Figure 1.
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Figure 1. Overall workflow of the AR assisted (left) and classical (right) approach outlining at which
point the additional techniques are integrated in the clinical workflow. Integration encompasses
patient registration for navigation purposes as well as calibration of the operating microscope allowing
for AR support throughout surgery and is performed prior to incision, not affecting surgery time.
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2.5. Data Analysis

To compare both technical approaches (traditional vs. navigated and AR assisted)
several parameters are investigated:

• Time for intraoperative patient preparation, defined as the duration between beginning
of patient positioning and incision.

• Surgery time, defined as the time between incision and suture
• Occurrence of intraoperative CSF leakage followed by reconstruction of dural defects

using autologous fascia lata
• Effective dosage of iCT for intraoperative automatic patient registration

3. Results

No major complications such as vascular injuries and new neurological deficits were
encountered in the recent study cohort. Major indications for the usage of neuronavigation
and AR support were in general previous transsphenoidal surgery, but also anatomical
variants (e.g., kissing carotid arteries), incomplete pneumatization of the sphenoid sinus,
or invasive tumors.

In the study group undergoing surgery using the classical non-navigated microscopic
technique (n = 81, mean age: 55.19 ± 19.24 years; male/female ratio: 42/39) none of them
had previous transsphenoidal surgery. In 66 cases (81.48%) endoscope assistance was used.
Intraoperative CSF leakage (small to major) was identified in 35 cases (43.21%) followed by
reconstruction using autologous fascia lata. The time for intraoperative patient preparation
was 32.33 ± 13.35 min, surgery time was 71.28 ± 29.52 min. In five cases (6.17%) a CSF
fistula was seen postoperatively requiring surgical revision, see Table 1.

Table 1. Summary of results.

Study Cohort
(Classical Approach)

Study Cohort
(AR Supported) p-Value

number of patients 81 84 -
mean age (years) 55.19 ± 19.24 55.95 ± 17.65 0.792 4

male/female ratio 42/39 41/43 0.696 3

endoscopic assistance 66 (81.48%) 63 (75.00%) 0.314 3

previous surgery 0 17 -
intraoperative CSF leakage 35 (43.21%) 36 (42.86%) 0.964 3

major complications 0 0 -
postoperative CSF fistula 5 (6.17%) 3 (3.57%) 0.437 3

patient preparation time (min) 32.33 ± 13.35 44.13 ± 13.67 <0.001 4

surgery time (min) 71.28 ± 29.52 69.87 ± 24.71 0.739 4

TRE (fiducial) (mm) 1 n.a. 1.85 ± 1.02
[0.51; 3.43] 0.001 5

TRE (iCT) (mm) 1 n.a. 0.76 ± 0.33
[0.21; 2.07]

ED (iCT) (mSv) 2 n.a. 0.128 ± 0.361
[0.041; 2.556] -

AR augmented reality, TRE target registration error, iCT intraoperative computed tomography, 1 TRE only applica-
ble for fiducial-based and automatic iCT-based registration, 2 only applicable for automatic iCT-based registration,
3 Chi-Quadrat-Test, 4 homogeneity of variances was assessed using Levene’s Test showing homogeneity of
variances, therefore a t-test is applied, 5 homogeneity of variances was assessed using Levene’s Test showing no
homogeneity of variances, therefore, a Mann–Whitney-U test was used. The significance level was set to p < 0.05.

In the study group undergoing surgery using neuronavigation and AR support (n = 84,
mean age: 55.95 ± 17.65 years; male/female ratio: 41/43), 18 patients had previous
transsphenoidal surgery. In 63 cases (75.00%) endoscope assistance was applied. Intraoper-
ative CSF leakage (small to major) was observed in 36 cases (42.86%) followed by recon-
struction using autologous facia lata. The time for intraoperative patient preparation was
44.13 ± 13.67 min. In further detail, patient preparation took 43.40 ± 14.03 min if fiducial-
based registration was used, using surface-based 46.33 ± 10.97 min and applying iCT-based
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registration 44.65 ± 13.54 min were required. Surgery time was 69.87 ± 24.71 min. In three
cases (3.57%) a CSF fistula was seen postoperatively requiring surgical revision, see Table 1.

iCT-based registration revealed a target registration error of 0.76 ± 0.33 mm ranging
from 0.21 mm to 2.07 mm, whereas fiducial-based registration led to a mean target registra-
tion error of 1.85 ± 1.02 mm ranging from 0.55 to 3.43 mm, showing significantly (p = 0.001)
improved registration accuracy, see Table 1.

The ED of iCT application was significantly reduced over time by omitting a lateral
scout scan that was performed in the first cases before CT imaging, by selection of further
low dose and finally super-low dose scan protocols, and also by selection of a limited
scanning range of 6.2 cm, which was sufficient for patient registration and image fusion
with preoperative data. In this way, ED was reduced from 2.566 mSv to 0.041 mSv without
any impact on registration quality. Mean ED was 0.128 ± 0.361 mSv, see Table 1.

The overall clinical accuracy of AR application depends on the patient registration
accuracy and the microscope registration accuracy. This was on the one hand evaluated by
focusing on the patient reference array’s marks and in parallel superimposing the outlines
of the reference array. If necessary, the AR visualization was shifted accordingly to improve
microscope registration accuracy and thereby also improve overall clinical accuracy. The
patient registration accuracy is evaluated using the TRE. In addition to this pre-incision
navigational accuracy check, also intraoperative landmarks, if clearly identifiable (Figure 2)
can be used to evaluate and thereby ensure continuous high navigational accuracy.
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Figure 2. Usage of intraoperative landmarks, in this case, the septum, to evaluate navigational ac-

curacy using the microscope and CT probe’s eye view (left upper corner), showing high navigation 
Figure 2. Usage of intraoperative landmarks, in this case, the septum, to evaluate navigational
accuracy using the microscope and CT probe’s eye view (left upper corner), showing high navigation
accuracy during surgery. Crosshairs (white arrows) showing the focus point in the microscope video
and the corresponding CT probe’s eye view (left upper corner).

The application of AR clearly enhanced the intraoperative orientation instantly in all
cases. Especially in cases with missing clearly identifiable intraoperative landmarks due
to previous surgery or patients with anatomical variants, the application of AR support
contributed to patient safety and also increased the surgeon’s comfort. The opportunity
to, on the one hand, have all relevant objects outlined on preoperative imaging data
on a screen close to the surgical field allows for image-based navigation but also to, on
the other hand, have various possibilities to visualize the relevant objects directly in the
operating microscope using the HUD allowed for a better orientation and a straight-forward
understanding of spatial relationships of all relevant structures. Nevertheless, at some
point, massive AR information visualized within the microscopic view can also conceal
the clear view on the surgical field. If required, the surgeon could decide on temporality
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switching off selected objects or the HUD completely. They could still use an AR display
on the video screen and the navigation screen provide alongside AR support.

Illustrative Cases

In Figure 3, the application of AR support and navigation is presented in a case
of a 37-year-old female patient with multiple endocrine neoplasia type 1. Diagnostic
follow-up showed a progress of an intra- and suprasellar lesion over the last 14 years
since the initial diagnosis. The endocrinological evaluation showed no relevant hormonal
insufficiency, vision was not impaired. AR support and navigation allowed for improved
intuitive surgical orientation in case of reduced intercarotid distance as seen in this case
lowering the risk of vascular complications. The lesion was removed completely without
any new endocrinological or neurological deficit. Histopathological evaluation revealed a
gonadotropic pituitary adenoma.

In Figure 4, the application of AR support and navigation is illustrated in a case
of previous surgery. The 84-year-old male patient was clinically admitted with acute
headache, nausea, double vision, and underwent surgery for a pituitary adenoma about
20 years before. Diagnostic CT imaging showed an intra- and suprasellar lesion. The
endocrinological evaluation suggested complete hormone substitution. The AR support
allowed for a straightforward approach to the sphenoid sinus. After opening the sphenoid
sinus, a noticeable calcified second layer beyond the sella turcia was identified, in relation
to the navigation display. The AR support and navigation allowed for a good orientation
with different on-site views enhancing 3D understanding. The soft part of the lesion
was removed completely without new endocrinological or neurological deficits. The
histopathological evaluation confirmed a gonadotropic pituitary adenoma with increased
proliferation. During follow-up, the patient reported no headaches or nausea, subjectively
double vision remained.
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Figure 3. Navigation and AR support in the case of a 37-year-old female patient with a gonadotropic
pituitary adenoma. Pre-segmented objects include the lesion (yellow), the carotid arteries (blue),
the chiasm (yellow), and the optic nerves (orange). (A) Microscope video with 3D visualization of
segmented objects using the head-up display. (B) The 2D and (C) 3D probe’s eye view of intraop-
erative CT data with 3D visualization of segmented objects. (D) Axial, (E) coronal, and (F) sagittal
view (standard navigation) of preoperative time-of-flight MR angiography data with focus on the
sella floor. (G) AR visualization superimposed on the microscope video with a 3D representation of
segmented structures. (H) Corresponding probe’s eye view, (I) target view (visualizing the lesion
(selected as target) in an uncut manner while only parts of the remaining objects distal to the focus
plane are displayed), and (J) 2D overview depicting the video plane in relation to the 3D visualization
of all objects.
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Figure 4. Navigation and AR support in the case of an 84-year-old male patient with previous
surgery of a gonadotropic pituitary adenoma. Pre-segmented objects include the lesion (yellow),
and the carotid arteries (blue). (A) Microscope video with 3D visualization of segmented objects
using the head-up display. (B) The 2D and (C) 3D probe’s eye view of preoperative CT data with 3D
visualization of segmented objects. (D) Axial, (E) coronal, and (F) sagittal view (standard navigation)
of preoperative CT data with focus on a calcified second layer beyond the sella turcica. (G) AR visu-
alization superimposed on the microscope video with a 3D representation of segmented structures.
(H) Corresponding probe’s eye view, (I) target view (visualizing the lesion (selected as target) in an
uncut manner while only parts of the remaining objects distal to the focus plane are displayed), and
(J) 2D overview depicting the video plane in relation to the 3D visualization of all objects.
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4. Discussion

Comparing the AR supported and classical approach, overall surgical time and com-
plication rates did not differ significantly between both study groups. Whereas preparation
time was significantly longer (roughly twelve minutes) in case of AR support in order to
set up patient registration (fiducial-/surface- or automatic iCT-based approach), an overall
benefit of AR support was seen by easing the surgical orientation not only in patients
who had undergone previous transsphenoidal surgery or with missing clearly identifiable
landmarks in situ, but also in all other cases and supporting the training of less-experienced
surgeons not yet familiar with orientation and surgical strategies within the limited surgical
field of view.

Commonly used standard neuronavigation is implemented as a separate navigation
display close to the surgical field with the need of using a dedicated navigation instrument
(e.g., pointer) and thereof switching surgical instruments and alternating viewing directions
throughout surgery for navigation support [28]. To eliminate switching to the navigational
pointer during surgery, e.g., the suction tube has been tracked by applying an electromagnetic
navigation system in transnasal transsphenoidal surgery [29–31] even though unwieldy in
the limited area provided by the speculum in the transsphenoidal approach.

A recent study used a navigation probe in endoscopic transsphenoidal surgery to iden-
tify, localize and visualize preoperatively outlined neural and vascular structures, showing
a match of preoperative segmentation and intraoperative endoscopic and micro-Doppler
findings. The authors state that the 3D visualization is highly informative, reassuring expe-
rienced surgeons, and could especially also assist less-experienced surgeons to avoid neural
of vascular injuries during transsphenoidal surgery [32]. The same was seen in this study
with AR supported visualization of lesion outlines and risk structures (e.g., carotid arteries,
chiasm, and optic nerves) with no encountered vascular or neurological complications.

Going along with the obstacles of standard navigation using only navigation displays
close to the surgical field (interruption of surgery for switching to a dedicated navigation
instrument for navigational purposes, alternating viewing directions between surgical site
and navigation displays), there was already an early need for virtualizing the physical
tooltip by using the microscope’s focal point as an integrated pointer and including all
relevant information in the surgical field of view to support the surgeon with transferring
relevant information from image space to the real surgical field and to further optimize
surgeon comfort and reduce the demand for attention shifts [28,33,34]. The AR support
allows for the integration of clinically relevant information in the surgical field of view
and thereby also enhances the surgeon’s mental visualization gained from navigation
data. Early implementations superimposed object outlines (dashed lines) in the recent
focal plane of the operation microscope, perpendicular to the viewing axis, using the
microscope’s HUD [11,16–18]. The dashed lines outlining the perimeter of target structures
two-dimensionally (2D) and the fact that the virtual and real components of the AR scene
do not fully match, hamper the depth perception, which is crucial for various surgical tasks
such as identification of small/deep targets and avoiding critical close-by structures such
as in case of skull base lesions in close relation to neurovascular structures [35,36].

State-of-the-art implementations as presented in this study allow for an improved
three-dimensional (3D) perception. Improved resolution of the HUD, color injection to
discriminate different objects, smooth real-time visualization provided by the massively
increase computing power and further efficient algorithmic implementation facilitate
further intuitive use of AR in neurosurgical applications also in combination with 2D and
3D visualization options close-by on the navigation displays. To avoid crowding of the
surgical view [33], and to adapt to the individual surgeon’s needs [28] and recent surgical
situation the extent, such as the amount and selection of visualized objects, and complexity
(2D/3D visualization) can be adjusted at any time during surgery. However, to provide
the surgeon with context information outside of the currently visualized sectional planes,
in-parallel standard navigation can be considered [13,28].
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To rely on AR throughout surgery, especially when performing surgery close to vascu-
lar risk structures within a restricted space such as in transnasal transsphenoidal surgery
with a limited line of sight, high navigational accuracy is a prerequisite. Standard fiducial-
or landmark-based registration approaches as most commonly used [37] are heavily user
dependent including the placement of artificial markers (location and amount of mark-
ers) [38] before imaging and the intraoperative acquisition of those landmarks using the
pointer (e.g., skin shift [39]). In this study TRE (1.85 ± 1.02 mm) for fiducial-based regis-
tration ranged from 0.55 mm to 3.43 mm, which is comparable to previous studies of our
group [13,40]. Showing this wide range, on the one hand, and the comparably low registra-
tion accuracy, on the other hand, documentation of the TRE right after patient registration
and in the course of surgery for example using repetitive landmark checks (artificial or
anatomical, clearly identifiable in pre- or intraoperative imaging data) is mandatory to
monitor overall clinical and AR accuracy. To overcome especially low registration accuracy
due to the user-dependent registration procedure, intraoperative automatic patient regis-
tration procedures such as iCT-based registration reveal a significantly lower mean TRE
of 0.76 ± 0.33 in this study is therefore highly recommended, as without sufficient high
clinical accuracy the AR display might give a false sense of security. Besides navigational
accuracy, the AR accuracy can also be finely tuned using the navigation update feature
provided in the microscope application by superimposing a semitransparent minimum
intensity projection (MIP) of bony structures reconstructed out of CT imaging data or object
outlines in the recent microscope’s focus plane. By adjusting the MIP/object visualization
using in-plane translation and rotation, spatial navigation accuracy can be improved as
reported for cranial surgery applying comparable cortical vessel alignment [41].

In case of inaccurate patient registration, positional shifting of the patient’s head in
relation to the attached patient reference array, or loss of accuracy throughout surgery
(e.g., effects of draping [42]), AR support provides an additional principle advantage over
purely standard pointer-based navigation. The size and spatial relation of outline objects
remains correct even though spatially transformed. In case this transformation can be
estimated using intraoperative landmarks, it can also be estimated for all objects, allowing
for at least a rough orientation. Nevertheless, if highly reliable navigation is required, in
case of intraoperative events, a re-registration, e.g., using a repeated low-dose iCT-based
registration scan, allows for a reestablishment of high navigational accuracy [13].

The use of super low-dose iCT protocols for automatic iCT-based patient registration
allowed for a tremendous reduction in the effective radiation dose from 2.566 mSv to 0.041
mSv (1.60%) and is thereof in a range of a single chest radiography. As demonstrated in
a recent study reduction in radiation dose from high-dose to low-dose protocols in this
setup did not diminish overall patient registration accuracy [26]. An improved registration
accuracy with a mean error of 1.28 mm was seen in the application of intraoperative cone
beam CT for registration of an endoscopic video navigation system compared to a tracker
localization error of about 1–2 mm also demonstrating the opportunity to drastically reduce
the applied dosage to roughly 1/100th of the dose of a typical diagnostic CT of the head [43].

The use of AR support and thereof navigation support might require additional
preoperative and intraoperative procedural time. However, studies on the extent and
significance of time reduction/time increase are rare [22]. As also in the classical approach a
thorough planning of the surgical procedure is highly recommended [23] also preoperative
segmentation is somehow time-consuming. One study reported a required planning time
of ten minutes for a transsphenoidal approach with sufficient image data quality [44]. Due
to the retrospective analysis in this study, preoperative planning time was not acquired
in all cases, but given the diverse planning tool offered by the used navigation system,
preoperative planning of transsphenoidal procedures outlining the lesion and vascular
and neural risk structures is available in a moderate amount of time, depending on image
quality and clinical and technical user experience. For overall operative time, mixed
effects are seen [22]. Most set-ups analyzed in a recent review include different platforms,
microscope-based or endoscope-based AR systems, and differing definitions of “used time”
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(e.g., overall and surgical) making results hard to interpret. In this study, no significant
difference in surgical time (incision to suture) is seen in both groups, whereas preparation
time (beginning to patient positioning to incision) in one group including the additional
requirement of patient registration differed significantly, the same accounts for overall time
incorporating patient preparation and surgical time. However, in line with [22], prolonged
time might be more dependent on the familiarity of the whole team (OR staff, technical
staff, anesthesia team, and surgeons) with the technology, even though a mean additional
time in the pre-surgical phase for patient registration of roughly twelve minutes as in this
study seems reasonable. Nevertheless, further studies are needed to evaluate the effect of
AR support on pre- and intraoperative time.

Intraoperative CSF leakage frequently occurs in transsphenoidal surgery of pituitary
lesions with reported rates of over 50% with various grades ranging from small leaks
without obvious diaphragmatic defect, to large diaphragmatic or dural defects [45,46]. In
this study intraoperative CSF leakage was seen in 43.21% (classical approach) and 42.86%
(AR supported approach), not differing significantly. The rate of postoperative CSF fistula
also did not differ significantly among both groups (6.17% vs. 3.57%), being in a comparable
range of reported postoperative CSF fistulas (3.90%), slightly higher in the study cohort
using the classical non-AR supported approach [24].

The integration of endoscopes, not only used in addition to the microscope-based
transsphenoidal approach or as a standalone tool in endoscopic transsphenoidal surgery,
into the navigation system enables the visualization of the endoscope’s tip in relation
to anatomical structures also serving as a navigational “pointer” [30]. Concerning the
benefits of AR support in the microscope-based set-up also the endoscope-based set-up can
benefit from the integration of AR support to improve orientation and ease identification of
target and especially risk structures. The optically distorted geometry of the endoscope
video might thereby be an obstacle to address when AR support is implemented. First
implementations of AR support in endoscope-based surgery have been demonstrated
already in 2002 [47], continuously improved with a further broadened field of view [48],
used in combination with robotic devices [49], e.g., for integration of virtual endoscopy [50].

AR support can also assist in education and training of residents and less-experienced
surgeons allowing for training and practice on the one hand outside of the OR but also
on the other hand during surgery [8] providing especially in case of transsphenoidal
approaches an improved and eased surgical orientation also in “straightforward” cases, al-
lowing for a mental mapping of surgical trajectory, surgical field, intraoperative landmarks,
and image data.

One limitation of this study is its retrospective nature, as especially time parameters
are dependent on the surgical routine documentation, not separating all phases of surgery
as possibly required within this study (e.g., time for planning or explicit time for patient
registration is not documented). Especially in cases of previous transsphenoidal surgery or
patients with anatomic variants, a control group of patients undergoing surgery without
AR support is missing. Due to the low reported numbers of severe complications of smaller
than 1–2% [24], depending on the surgeon’s experience, a comparative study to prove
increased patient safety seems unethical (e.g., surgery performed by a rather inexperienced
surgeon to encounter complications) or impractical (e.g., large required patients cohort).

5. Conclusions

AR support in transsphenoidal surgery eases surgical orientation, especially in cases
with anatomical variant or in patients who had undergone previous transsphenoidal
surgery with clearly missing identifiable landmarks. Even though slightly more time is
needed to set-up patient registration, AR support also seems to enhance orientation in
all other cases and, therefore, might also assist in training of less-experienced surgeons
who are becoming more familiar with surgical orientation and strategies in the narrow
space provided by the speculum in the transsphenoidal approach. However, high patient
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registration accuracy and overall clinical accuracy, as supported by automatic intraoperative
imaging-based registration procedures, is a prerequisite.
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